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Abstract 

Purpose: The purpose of this study was to assess the potential of a deep learning model to discriminate between 

benign and malignant breast lesions using magnetic resonance imaging (MRI) and characterize different 

histological subtypes of breast lesions. 

Materials and methods: We developed a deep learning model that simultaneously learns to detect lesions and 

characterize them. We created a lesion-characterization model based on a single two-dimensional T1-weighted 

fat suppressed MR image obtained after intravenous admin-istration of a gadolinium chelate selected by 

radiologists. The data included 335 MR images from 335 patients, representing 17 different histological 

subtypes of breast lesions grouped into four categories (mammary gland, benign lesions, invasive ductal 

carcinoma and other malignant lesions). Algorithm performance was evaluated on an independent test set of 

168 MR images using weighted sums of the area under the curve (AUC) scores. 

Results: We obtained a cross-validation score of 0.817 weighted average receiver operating characteristic 

(ROC)-AUC on the training set computed as the mean of three-shuffle three-fold cross-validation. Our model 

reached a weighted mean AUC of 0.816 on the independent challenge test set. 

Conclusion: This study shows good performance of a supervised-attention model with deep learning for breast 

MRI. This method should be validated on a larger and independent cohort. 

KEYWORDS: Magnetic resonance imaging (MRI); Breast lesion detection; Convolution neural networks; 

Transfer learning; Attention model 

 

As the number of radiological examinations steadily increases, so does the complexity of their interpretation and 

demands on providers [1]. Radiologists are exposed to deci-sion fatigue, which can lead to a high frequency of 

medical 

  

 
Figure 1. T1-weighted MR images in the axial plane obtained after intravenous administration of a gadolinium 

chelate. A. Binary mask is superimposed over the MR image that shows invasive ductal carcinoma. The lesion 

shows heterogeneous enhancement. B. MR image shows one invasive ductal carcinoma. 
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errors including missed, incorrect, or delayed diagnoses [2]. In addition, interpretations by radiologists are prone 

to high intra- and inter-individual variability [3,4]. 

 

Today, breast magnetic resonance imaging (MRI) is used for many indications in the management of 

breast cancer. The main indications of MRI include screening of patients with a high risk of developing breast 

cancer [5], deter-mining the extent of disease, assessing positive margins, monitoring the response to neo-

adjuvant chemotherapy, evaluation of metastatic axillary lymphadenopathy of unknown primary [6,7]. Breast 

MRI is a multiparametric examination. In this regard, a classical protocol includes several sequences including 

dynamic T1-weighted gradient echo images obtained before and after intravenous admin-istration of a 

gadolinium chelate, T2-weighted images or short-tau inversion-recovery (STIR) images, and diffusion-weighted 

(DW) images [8]. 

Deep learning is a subtype of machine learning that uses layers of artificial neurons, called neural 

networks [9], and has demonstrated superior performance compared to standard computer vision algorithms 

[10]. Deep learning in radiology has the potential to substantially alter each step of the medical imaging pipeline 

such as image recon-struction [11], image segmentation, and final interpretation [12,13]. Most studies on breast 

imaging and deep learn-ing have focused on mammography [14,15]. Less evidence is available concerning 

breast MRI. However, a compari-son of human performance to that of radiomics algorithms and convolutional 

neural network (CNN) in breast lesion characterization with MRI showed that interpretation by a radiologist was 

better (AUC = 0.98) than CNN (AUC = 0.88) or radiomics (AUC = 0.81) [16]. 

Managing artificial intelligence projects for clinical prac-tice requires a combination of expertise 

between data scientists and radiologists. Here, we present an innovative tool for imaging interpretation of breast 

MRI examinations that could increase safety and reliability in the near future. This study was the result of a 

collaboration made possible by a data challenge organized during the Journées Franco-phones de Radiologie in 

Paris in October 2018. 

The purpose of this study was to assess the potential of a deep learning model to discriminate between 

benign and malignant breast lesions using MRI, and characterize differ-ent histological subtypes of breast 

lesions. 

 

I. MATERIALS AND METHODS 
Preprocessing 

The dataset consisted of anonymized two-dimensional T1-weighted gadolinium chelate-enhanced MR 

images of the breast provided during the Journées Francophones de Radi-ologie 2018. Despite the 

standardization already performed by the challenge organizers, the data were highly heteroge-neous in scale 

(Fig. 1). All images were resized to 240 × 345 to have the same image size for all images. 

 

Automatic feature extraction 

To extract features from images, we used a 50-layer resid-ual neural network (ResNet-50) [17], 

pretrained on the ImageNet dataset, from which we removed the last two layers. This network was designed for 

color images, thus each grayscale image was copied three times to simulate the red, green, and blue channels. 

For an input image of 3 × 240 × 345, the network produced a feature map with a dimension of 2048 × 8 x 11. A 

first simple approach consisted of averaging this representation over the spatial dimensions, as shown in Eq. (1): 

 

xk  = 

1 

x
kij (1) 8 × 11  i,j 

 

This technique yielded a feature vector size of 2048 for each image, which was fed to a single densely 

connected layer with five neurons for each classification task (malig-nancy, normal tissue, other benign lesions, 

invasive ductal carcinoma (IDC), and other malignant lesions). The main drawback of this approach was that it 

does not differentiate regions of little interest, such as the thorax or background. 



Detection of MRI breast lesions using deep learning 

6 

Supervised attention mechanism 

One challenge of this task was the heterogeneity in the appearance and size of breast lesions. We 

facilitated learning by decomposing classification into two steps: (i), detection of abnormalities present on MR 

images and (ii), classification of these lesions. 

These two steps were simultaneously performed by two branches of the same model. For the first, we 

created and used additional labels for localization. These labels con-sisted of bounding boxes surrounding the 

lesions. These annotations did not require precise characterization. They were rapidly performed by a 5th year 

resident in radiology (P.H.), who had limited experience in breast MRI (Fig. 2). 

 

 

 
Figure 2. T1-weighted MR images in the axial plane obtained after intravenous administration of a gadolinium 

chelate. Annotation masks (in yellow) are superimposed over the MR images that show (a) a proliferating lesion 

and (b) an invasive ductal carcinoma. The annotations were made by a radiologist using a dedicated tool which 

enables to draw bounding box. 
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Figure 3. Architecture of our network. Each image of size 240 × 345 is fed into the ResNet50 Neural Network 

which produces 2048 images of size 8 × 11. They are then fed to the upper branch also called the ‘‘attention 

block’’ of the algorithm that learns to detect anomalies in the image. The latter are also fed to a second branch 

that averages features maps over the selected areas. Finally, the 2048 features are fitted to a logistic regression 

that outputs a score ranging from 0 to 1 for each category of focal lesion. This score can be interpreted as the 

probability of existence of such lesion in the image. 

 

For each image, a binary mask of the same size, indicat-ing the presence or absence of lesions was generated. 

The size of this mask was reduced to match the output dimen-sions of the ResNet (i.e., 8 × 11 pixels for an input 

image with spatial dimensions of 240 × 345). 

 

The localization module was a single 1 × 1 convolution, applied to the output of the ResNet. This transformed 

the 2048 × 8 11 representation into a single image with the dimensions 8 × 11, to which we applied a sigmoid 

function to generate a prediction between 0 and 1. This module was trained to reproduce the binary mask 

generated from the annotations. This local prediction was then used to guide the main module responsible for 

determining the presence and characterization of lesions in the image. We used the local prediction to compute a 

weighted average of the final feature map, in which pij is the local prediction for pixel (i, j), as shown in Eq. (2): 

xk  = 

i,j 

ij 
x
kij 

(2) 

  

   

 

i,j 

ij 

    

 

When the module predicted a uniform probability of a lesion over the entire image, the formula was equivalent 

to the spatial average of the simple model. Conversely, when the module predicted the presence of a lesion in a 

single pixel with high confidence, only the feature vector extracted from this pixel was used for the final 

prediction. 

The final prediction was performed by a densely con-nected layer with five neurons, one for each 

prediction: lesion malignancy classification, normal tissue, other benign 
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Figure 4. Two examples of attention maps generated by the model for (a) glandular tissue and (b) an invasive 

ductal carcinoma. This shows that the trained model can detect without human intervention the lesions or 

normal tissue on new image it was not trained on. 

 

 

lesion, IDC, and other malignant lesions. The architecture of the model is shown in Fig. 3. 

 

Furthermore, this attention mechanism allows interpre-tation of the model’s predictions. To do so, we took the 

8 × 11 attention map 

ij 

and resized it to the original  

 

i,j 
ij 

image dimensions (i.e., 240 × 345). This map could be super-imposed over the image to see the areas considered 

by the model to make its decision, as shown in Fig. 4. 

 

Implementation 

Our model was trained simultaneously on the three tasks evaluated in this challenge (lesion detection, 

diagnosis of malignancy, and lesion classification). This multitask tech-nique limited overfitting. However, the 

tasks were not learned at the same pace. Thus, we saved three copies of the weights, chosen depending on the 

performance of the model on a validation set. When the model reached its best AUC for lesion detection, we 

saved the first copy of its weights, which was used only for this task. We used stochas-tic gradient descent with 

Nesterov momentum to train the models. The results were highly variable due to the small amount of data, and 

thus we performed three-fold cross-validation, repeated over three different splits of the data. We repeated nine 

experiences during which we randomly selected 223 images (out of the 335 training set images) to train our 

neural network, and estimated its performance computing an AUC over the 112 images left. We then com-puted 

the mean scores over those nine different experiences to evaluate our model before executing it on the test set 

provided by the organizers of the challenge. 

 

II. RESULTS 
The number of each lesion type provided by the challenge organizers is detailed in Table 1. The number of 

breast lesions provided in the training set for each lesion category is presented in Table 2 and was used to 

determine the final score, following Eq. (3): 

 

score = 0.6 × AUC  benign + 0.4 

 

malignant 
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Table 1 Number of breast lesions provided in the train-ing dataset. 

 

 

Lesion type 

 

 

Mammary gland 104 (31%) 

Sclerosing adenosis 3 (0.9%) 

Radial scar 2 (0.6%) 

Fibroadenoma 24 (7%) 

Galactophoritis 5 (1.5%) 

Atypical hyperplasia 4 (1.2%) 

Cyst 23 (6.9%) 

PASH 1 (0.3%) 

Papilloma 1 (0.3%) 

Cytosteatonecrosis 13 (3.9%) 

Intra-mammary lymph node 24 (7%) 

Other proliferating lesion 8 (2.4%) 

Invasive ductal carcinoma 82 

(24.5%

) 

Invasive lobular carcinoma 16 (4.8%) 

Triple negative cancer 18 (5.4%) 

Intraductal carcinoma 5 (1.5%) 

Mucinous carcinoma 2 (0.6%) 

Total 335 (100%) 

 

 

PASH indicates pseudoangiomatous stromal hyperplasia. 

 

 

 

Table 2 Number of breast lesions provided in the train-ing set for each lesion category. 

Lesion type Training set Test set 

Mammary gland 104 (31.1%) 

a 

a 

Other benign lesions 108 (32.2%) 

a 

Invasive ductal carcinoma 82 (24.5%) 

a 

Other malignant lesion 41 (12.2%)  

Total 335 168 

 

 
a Note: the test set was used by the data challenge organizers to evaluate the study algorithms. Therefore, 

lesion types were not known for the test set.
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Table 3 Detailed AUC scores according to breast lesion 

× 1/4 
AUC

lesion  subgroup (3) type.  

lesion  subgroups   

Lesion group AUC    

The average ROC-AUC scores achieved by our model 

on Malignancy 0.869 (0.027) 

the repeated cross-validation (i.e., three times three-fold) Mammary gland 0.728 (0.046) 

on each lesion subgroup and the weighted sum according Other benign lesions 0.659 (0.048) 

to the evaluation score of the challenge, determined 

using Invasive ductal carcinoma 0.805 (0.039) 

equation 1, are shown in Table 3 and corresponding 

ROC Other malignant lesions 0.761 (0.065) 

curves are provided in Fig. 5. The same model achieved 

a Overall score (weighted sum) 0.817 (0.036) 

weighted AUC of 0.816 on the independent challenge 

test 

  

Data are presented as means. Numbers in 

parentheses are stan- set.   

   

dard  deviations.  AUC  values  were  computed  as  

the  mean  of 

   

three shuffled three-fold cross-validation on the 

training set. 

Discussion 

  

Nine experiments in which two third of the images 

from the 

  training set were randomly used to train our 

algorithm and the    

Our  results  ranked  first in  this  challenge.  This 

result  

is 

scores were computed from the results on the last 

third. Mean 

scores  over  those  nine  experiments  are  shown  

and  standard 

promising, given the relatively small amount of data with 

deviations are provided between 

brackets.  

 

a training dataset consisting of only 335 images. The use of 

 

a supervised attention model was doubly beneficial. First, 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Diagrams show ROC curves for (a) benign vs. malignant classification and (b) lesion classification 

obtained with one model. The scores for lesion classification are heterogeneous, ranging from 0.656 for 

detection of the subgroup ‘‘other malignant lesions’’ to 0.868 for the detection of invasive ductal carcinoma. 

These differences could be explained by the difference of samples number for each lesion category: there were 

82 examples of intraductal carcinoma in the training set, and only 41 in the category ‘‘other malignant lesions’’. 

The model performs better when we feed more examples to it. 
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expert-labelling on image strongly improved interpretability of the results. The generated heat maps made it 

possible to better understand how the model performed, including mis-classification. Furthermore, the bounding 

boxes annotations of the radiologist significantly increased the performance of the model. Annotating datasets is 

a time-consuming task using classical research tools, and such tools are not amenable to a radiological 

workflow. One of the challenges in the deep-learning era in medical imaging is to build efficient tools to 

develop strong models (similar to human performance and clinically relevant) based on annotations from 

radiologists’ workflow [18]. We have developed a tool that enabled rapid labeling which improved the 

performance without being time-consuming. With this tool, the whole dataset was labeled in less than an hour. 

Since this chal-lenge, some papers applied CNN beyond characterization of lesions on breast MRI, such as 

predicting molecular subtype of breast cancer [19], or response to neoadjuvant therapy [20]. This confirms that 

beyond the current hype, machine learning has many applications to come in cancer manage-ment that could 

change the clinical decisions and become an important tool for the physician. 

 

Breast lesions are clinically characterized with ACR Bi-RAds on multiparametric MRI, and a recent study using 

CNN showed good performance on multiple sequences [16] with an AUC of 0.89. Even if our study is not 

directly comparable (we used one slice of only one MRI sequence), our result encourages us to apply our 

method on three-dimensional sequences and compare to the CNN method proposed [16] in order to check if our 

attention method improves significantly the performances on a new cohort. 

 

In conclusion, the validation of an algorithm on an independent dataset, extended to other sequences with 

additional 3D information rather than a single 2D image, is an essential step in judging the generalizability of 

the model. Further studies are required to show the interest of such a technique and demonstrate a clinically 

implementable workflow for lesion classification, especially with BI-RADS. The use of larger databases and 

multiparametric MRI are likely to further increase the accuracy of the model. 
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